Acid-Catalyzed Reactions of Epoxides Derived from Citronellene

T. M. Khomenko, D. V. Korchagina, and V. A. Barkhash

Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 9, Novosibirsk, 630090 Russia e-mail: chomenko@nioch.nsc.ru

Received November 25, 2003

Abstract—Transformations of epoxy derivatives of citronellene in the presence of acid catalysts (ZrO₂/SO₄²⁻, SnCl₄, H₂SO₄) in methylene chloride, acetone, and acetonitrile give rise to various oxygen- and nitrogen-containing compounds.

Acid-catalyzed reactions of epoxy terpenoids attract attention from the synthetic viewpoint. Variation of the reaction conditions makes it possible to obtain a number of oxygen-containing compounds belonging to different classes from a single accessible precursor. We previously studied rearrangements of epoxides derived from linalool over solid acid catalysts and synthesized various oxygen-containing compounds. It was shown that the key stage in these transformations is heterocyclization involving oxygen atom of the hydroxy group [1]. In the present work we examined acid-catalyzed reactions of epoxides derived from citronellene (Ia, Ib), which are structurally related to 6,7-epoxy derivatives of linalool but contain only a double bond in addition to the epoxy ring. Initial epoxy derivatives Ia and Ib were synthesized by oxidation of (–)-β-citronellene (**II**) with peroxyacetic acid in methylene chloride (Scheme 1); according to the ¹H NMR data, the ratio of diastereoisomers **Ia** and **Ib** was ~1:1.

Unlike epoxides derived from linalool, compounds **Ia** and **Ib** in the presence of ZrO_2/SO_4^{2-} at room temperature were converted into (6R)-2,6-dimethyloct-7-en-3-one (**III**) and (5R)-2,2,5-trimethyl-6-heptenal (**IV**) at a ratio of ~3:1 (GLC). The formation of the 5S

isomer of **IV** as by-product (which was identified by the IR spectrum of the reaction mixture) in the reaction of epoxy derivatives of (+)- β -citronellene with LiClO₄ was noted in [2]. We isolated compound **IV** as individual substance.

It is known that epoxy derivatives of geraniolene and geranyl acetate undergo various cyclizations by the action of Lewis acids, e.g., SnCl₄ [3, 4]. Citronellene epoxides **Ia** and **Ib** turned out to behave differently. Isomerization of epoxy derivatives **Ia** and **Ib** in the presence of SnCl₄ at 0°C afforded a mixture of acyclic compounds **III** and **IV** at a ratio of ~1:2 (GLC–MS). The following scheme of formation of compounds **III** and **IV** can be proposed (Scheme 2). Opening of the oxirane ring in **Ia** or **Ib** gives tertiary carbocation **A**; the subsequent hydride shift or C–C shift to the positively charged center C⁷, followed by deprotonation, yields ketone **III** or aldehyde **IV**, respectively.

Compounds **Ia** and **Ib** are readily involved in intermolecular transformations catalyzed by sulfuric acid. In the system acetone—water—sulfuric acid (40:6:1, by volume), (5R,S)-2,2,4,4-tetramethyl-5-[(3R)-methyl-4-pentenyl]-1,3-dioxolanes **Va** and **Vb** were obtained. The (3S)-isomers of compounds **Va** and **Vb** were previously synthesized from (+)- β -citronellene epoxides in two steps [5].

The use of the Ritter reaction for the synthesis of substituted dihydrooxazoles from 6,7-epoxy derivatives of citral is quite promising [6]. Under analogous conditions (CH₃CN, H₂SO₄), compounds **Ia** and **Ib** were converted into mixtures of (5R,S)-2,4,4-tri-

Scheme 2.

methyl-5-[(3R)-methyl-4-pentenyl)-4,5-dihydrooxazoles **VIa** and **VIb**, (4R,S)-2,5,5-trimethyl-4-[(3R)-methyl-4-pentenyl)-4,5-dihydrooxazoles **VIIa** and **VIIb**, and ketone **III** at a ratio of ~3.5:1 (**VI+VIIb**:**III**; GLC). Compounds **VIa**, **VIb**, **VIIa**, and **VIIb** were not reported previously. Thus the transformation of epoxides **Ia** and **Ib** via reaction of intermediate cations **A** and **B** with acetonitrile, which leads to structures **VIa**, **VIb**, **VIIa**, and **VIIb**, is accompanied by intramolecular rearrangement of cation **A**, resulting in formation of ketone **III**. Analogous opening of the oxirane ring at the C^6 -O and C^7 -O bonds was observed in the isomerization of linalool 6,7-epoxides over ZrO_7/SO_4^{2-} [1].

According to the 1 H and 13 C NMR spectra of compounds **VIa**, **VIb**, **VIIa**, and **VIIb**, the strongest changes in the chemical shifts are observed for the 3-H proton and C^{1} and C^{3} atoms; these variations are consistent with those expected for formation of oxazole ring via cleavage of either C^{6} –O or C^{7} –O bond in the initial epoxides. In going from compounds **VI** to **VII**, the 3-H signal in the 1 H NMR spectra shifts upfield ($\Delta\delta$ ~0.65 ppm), the C^{1} signal in the 13 C NMR spectrum shifts downfield ($\Delta\delta$ ~4.7 ppm), and the C^{3} signal shifts upfield ($\Delta\delta$ ~10 ppm) due to different effects of the oxygen and nitrogen atoms.

EXPERIMENTAL

The 1 H and 13 C NMR spectra were recorded on a Bruker AM-400 spectrometer operating at 400.13 and 100.61 MHz, respectively, from solutions in CDCl₃–CCl₄ (~1:1) using the solvent signals (CHCl₃, δ 7.24, δ _C 76.90 ppm) as internal reference. The structure of the products was determined by analysis of spin–spin coupling constants in the 1 H– 1 H double resonance spectra, as well as of the 13 C NMR spectra recorded with selective decoupling from protons, off-resonance spectra, differential spectra modulated by long-range 13 C– 1 H coupling (LRJMD, n J_{CH} = 10 Hz, n = 2, 3), and two-dimensional 13 C– 1 H heteronuclear correlation spectra (COSY, 1 J_{CH} = 135 Hz).

The purity of the initial compounds and products was checked by GLC on a Biokhrom-1 chromatograph equipped with a flame ionization detector and an SE-54 quartz capillary column (13000×0.22 mm); carrier gas helium, oven temperature 70–180°C. The elemental compositions were determined from the high-resolution mass spectra which were recorded on a Finnigan MAT-8200 spectrometer. Gas chromatographic–mass spectrometric analysis was performed on a Hewlett–Packard 618100A instrument. The optical rotations were measured on a Polamat A spectro-

polarimeter from solutions in CHCl₃. The procedure for the preparation of ZrO_2/SO_4^{2-} was described in [7]; the solvent was passed through a column charged with calcined aluminum oxide. (–)- β -Citronellene (**II**) from Fluka, $[\alpha]_D^{20} = -9.0 \pm 1^\circ$, containing no less than 90% of the main substance was used.

Epoxy derivatives Ia and Ib. A solution of 1.82 g (0.024 mol) of peroxyacetic acid in 25 ml of methylene chloride (prepared by extraction from a mixture of 200 ml of acetic acid, 200 ml of 30% hydrogen peroxide, and 10 ml of concentrated sulfuric acid and titrated with sodium thiosulfate) was added over a period of 20 min under vigorous stirring to a mixture of 2.76 g (0.020 mol) of (-)-β-citronellene (II) and 5.4 g of Na₂CO₃. The mixture was stirred for 1 h at room temperature and extracted with diethyl ether, the extract was washed with a 17% aqueous solution of Na₂CO₃ and water, and dried over Na₂SO₄, and the residue (2.67 g) was subjected to chromatography on silica gel (100-160 µm) using a solution of diethyl ether in hexane (0 to 5%) as eluent. We isolated 1.56 g (51%) of compounds **Ia** and **Ib** (a mixture of diastereoisomers at a ratio of ~1:1) $[\alpha]_{580}^{25} = -14.0^{\circ}$ (c = 3.64, CHCl₃). ¹H NMR spectrum of **Ia**, δ, ppm: 0.90 d $(C^9H_3, J_{9,3} = 7 \text{ Hz}), 1.118 \text{ s and } 1.163 \text{ s } (C^8H_3, C^{10}H_3),$ 1.34-1.45 m (4H, 4-H, 5-H), 2.06 m (3-H), 2.51 m (6-H), 4.80 d.d.d (1-H_{cis}, $J_{1-cis,2-cis} = 10$, ${}^{2}J = 2$, $J_{1-cis,3} =$ 1 Hz), 4.84 d.d.d (1- H_{trans} , $J_{1-trans, 2-cis} = 17$, J = 2, $J_{1-trans,3} = 1$ Hz), 5.52 d.d.d (2-H, J = 17, 10, $J_{2,3} =$ 7.5 Hz) (cf. [2]. ¹³C NMR spectrum of **Ia**, δ_C , ppm: 113.01 t (C¹), 143.75 d (C²), 37.57 d (C³), 33.22 t (C⁴), 26.52 t (C⁵), 63.79 d (C⁶), 57.44 s (C⁷), 24.65 q and 18.55 q (C⁸, C¹⁰), 19.95 q (C⁹). ¹H NMR spectrum of **Ib**, δ , ppm: 0.90 d (C^9H_3 , $J_{9,3} = 7$ Hz), 1.116 s and 1.160 s (C^8H_3 , $C^{10}H_3$), 1.34–1.45 m (4H, 4-H, 5-H), 2.04 m (3-H), 2.51 m (6-H), 4.80 d.d.d (1-H_{cis}, $J_{1-cis,2-cis} = 10$, $J_{1-cis,1-trans} = 2$, $J_{1-cis,3} = 1$ Hz), 4.85 d.d.d $(1-H_{trans}, J_{1-trans, 2-cis} = 17, J = 2, J_{1-trans, 3} = 1 \text{ Hz}),$ 5.54 d.d.d (2-H, J = 17, 10, $J_{2,3} = 7.5$ Hz). ¹³C NMR spectrum of **Ib**, δ , ppm: 112.85 t (C¹), 143.63 d (C^2) , 37.34 d (C^3) , 33.01 t (C^4) , 26.32 t (C^5) , 63.61 d (C^6) , 57.35 s (C^7) , 24.67 q and 18.52 q (C^8, C^{10}) , $20.15 q (C^9)$.

Isomerization of compounds Ia and Ib in the presence of ZrO₂/SO₄². A solution of 0.275 g of stereoisomer mixture Ia/Ib in 2 ml of CH₂Cl₂ was added to a suspension of 0.550 g of ZrO₂/SO₄² (preliminarily calcined for 2 h at 500°C) in 23 ml of methylene chloride, and the mixture was stirred for 0.5 h at 20°C. After appropriate treatment, the crude product was subjected to column chromatography on

aluminum oxide (activity grade IV) to isolate 0.255 g of a mixture of compounds III and IV at a ratio of \sim 3:1 (GLC). This mixture was separated by double column chromatography on silica gel (40–100 μ m, Czechia) using 0 to 35% of diethyl ether in hexane as eluent. We isolated 0.097 g (35%) of ketone III and 0.019 g (7%) of aldehyde IV.

Compound III, $[\alpha]_{580}^{25} = -9.0^{\circ}$ (c = 1.11, CHCl₃).
¹H NMR spectrum, δ , ppm: 0.93 d (C⁹H₃, $J_{9,6} = 6.5$ Hz), 1.00 d (C¹H₃, C¹⁰H₃, J = 7 Hz), 1.42 d.d.t. (5-H, $J_{5,5'} = 14$, $J_{5,6} = 8$, $J_{5,4} = 7$ Hz), 1.54 d.t.d (5'-H, J = 14, $J_{5',4} = 8$, $J_{5',6} = 5$), 2.02 m (6-H), 2.34 d.d (2H, 4-H, J = 8, 7 Hz), 2.49 sept (2-H, J = 7 Hz), 4.85 d.d.d (8-H_{cis}, $J_{8-cis,7-cis} = 10$, $J_{8-cis,8-trans} = 2$, $J_{8-cis,6} = 1$ Hz), 4.87 d.d.d (8-H_{trans}, $J_{8-trans,7-cis} = 17$, J = 2, $J_{8-trans,6} = 1$ Hz), 5.53 d.d.d (7-H, J = 17, 10, $J_{7,6} = 7.5$ Hz) (cf. [2]).
¹³C NMR spectrum, δ _C, ppm: 18.20 q and 18.15 q (C¹, C¹⁰), 40.68 d (C²), 213.72 s (C³), 37.85 t (C⁴), 29.96 t (C⁵), 37.50 d (C⁶), 143.67 d (C⁷), 113.29 t (C⁸), 20.30 q (C⁹). Found: M^+ 154.13594. C_{10} H₁₈O. Calculated: M 154.13576.

Isomerization of compounds Ia and Ib in the presence of SnCl₄. A mixture of 0.1 ml of SnCl₄ and 1 ml of dry methylene chloride was added under stirring and cooling (0°C) to a solution of 0.410 g of stereoisomer mixture Ia/Ib in 25 ml of dry methylene chloride, and the mixture was stirred for 2 h at 0°C. The mixture was diluted with chloroform, washed in succession with a 17% aqueous solution of sodium carbonate, 10% hydrochloric acid, a saturated solution of sodium chloride, and water, and dried over sodium sulfate. The solvent was distilled off, and the residue (0.329 g) was passed through a column charged with aluminum oxide (activity grade IV). The column was eluted with diethyl ether to obtain 0.222 g of a mixture containing 22% of compound III and 48% of IV (GC-MS data). The mixture was subjected to column chromatography on silica gel (40–100 µm, Czechia) using 0 to 5% of diethyl ether in hexane as eluent to isolate 0.020 g (5%) of ketone **III** and 0.025 g (6%) of aldehyde IV.

Compound IV. $[\alpha]_{580}^{25} = -9.9^{\circ}$ (c = 0.81, CHCl₃). ¹H NMR spectrum, δ , ppm: 0.96 d (C⁸H₃, $J_{8,5} = 7$ Hz), 1.00 s (C¹⁰H₃, C⁹H₃), 1.11–1.24 m (2H, 4-H), 1.32–1.48 m (2H, 3-H), 2.02 d.q.t (5-H, $J_{5,6} = 8$, $J_{5,8} = 7$, $J_{5,4} = 7$ Hz), 4.89 d.d.d (7-H_{cis}, $J_{7\text{-cis},6\text{-cis}} = 10$, $J_{7\text{-cis},7\text{-trans}} = 2$, $J_{7\text{-cis},5} = 1$ Hz), 4.91 d.d.d (7-H_{trans}, $J_{7\text{-trans},6\text{-cis}} = 17$, J = 2, $J_{7\text{-trans},5} = 1$ Hz), 5.58 d.d.d (6-H, J = 17, 10, 8 Hz), 9.37 s (1-H). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: 205.12 d (C¹), 45.53 s (C²), 34.89 t (C³), 30.97 t

(C⁴), 38.34 d (C⁵), 143.86 d (C⁶), 113.30 t (C⁷), 20.33 q (C⁸), 21.42 q and 21.35 q (C⁹, C¹⁰). Found: M^+ 154.13594. $C_{10}H_{18}O$. Calculated: M 154.13576.

Reaction of compounds Ia and Ib with acetone in the presence of sulfuric acid. Stereoisomer mixture Ia/Ib, 0.200 g, was added to 15 ml of an acetone—water—sulfuric acid mixture (40:6:1, by volume), and the mixture was stirred for 15 min at 20°C. After appropriate treatment, we isolated 0.162 g of a crude product containing ~80% of compounds Va and Vb (GLC). It was subjected to column chromatography on silica gel (40–100 µm, Czechia) using 0 to 5% of diethyl ether in hexane as eluent to isolate 0.138 g (50%) of diastereoisomer mixture Va/Vb with one isomer slightly prevailing (1 H NMR), [α]₅₈₀²⁵ = -2.70° (c 3.33, CHCl₃).

Isomer Va. ¹H NMR spectrum, δ , ppm: 0.91 d (C¹³H₃, $J_{13,6} = 7$ Hz), 0.95 s and 1.11 s (C⁹H₃, C¹⁰H₃), 1.194 s and 1.277 s (C¹¹H₃, C¹²H₃), 1.12–1.51 m (4H, 4-H, 5-H), 2.05 m (6-H), 3.50 d.d (3-H, $J_{3,4} = 9$, $J_{3,4} = 4$ Hz), 4.81 d.d.d (8-H_{cis}, $J_{8\text{-cis},7\text{-cis}} = 10$, $J_{8\text{-cis},8\text{-trans}} = 2$, $J_{8\text{-cis},6} = 1$ Hz), 4.85 d.d.d (8-H_{trans}, $J_{8\text{-trans},7\text{-cis}} = 17$, J = 2, $J_{8\text{-trans},6} = 1.2$ Hz), 5.55 d.d.d (7-H, J = 17, 10, $J_{7,6} = 7.5$ Hz). ¹³C NMR spectrum, δ_{C} , ppm: 79.77 s (C¹), 106.11 s (C²), 83.43 d (C³), 27.04 t (C⁴), 33.73 t (C⁵), 37.63 d (C⁶), 143.87 d (C⁷), 112.90 t (C⁸), 25.92 q and 22.68 q (C⁹, C¹⁰), 28.39 q and 26.68 q (C¹¹, C¹²), 20.05 q (C¹³).

Isomer **Vb**. ¹H NMR spectrum, δ, ppm: 0.91 d ($C^{13}H_3$, $J_{13,6} = 7$ Hz), 0.95 s and 1.11 s (C^9H_3 , $C^{10}H_3$), 1.192 s and 1.279 s ($C^{11}H_3$, $C^{12}H_3$), 1.12–1.51 m (4H, 4-H, 5-H), 2.03 m (6-H), 3.52 d.d (3-H, $J_{3,4} = 9$, $J_{3,4'} = 3.5$ Hz), 4.81 d.d.d (8-H_{cis}, $J_{8\text{-cis},7\text{-cis}} = 10$, $J_{8\text{-cis},8\text{-trans}} = 2$, $J_{8\text{-cis},6} = 1$ Hz), 4.86 d.d.d (8-H_{trans}, $J_{8\text{-trans},7\text{-cis}} = 17$, J = 2, $J_{8\text{-trans},6} = 1.2$ Hz), 5.56 d.d.d (7-H, J = 17, 10, $J_{7,6} = 7.5$ Hz) (cf. [5]). ¹³C NMR spectrum, δ_C, ppm: 79.77 s (C^1), 106.11 s (C^2), 83.04 d (C^3), 26.75 t (C^4), 33.41 t (C^5), 37.97 d (C^6), 143.87 d (C^7), 112.82 t (C^8), 25.92 q and 22.65 q (C^9 , C^{10}), 28.39 q and 26.68 q (C^{11} , C^{12}), 20.17 q (C^{13}). Found: [$M - CH_3$]⁺ 197.15409. $C_{12}H_{21}O_2$ (fragment ion [$M - CH_3$]⁺). Calculated: M 197.15414.

Reaction of compounds Ia and Ib with acetonitrile in the presence of sulfuric acid. Concentrated sulfuric acid, 0.1 ml, was added to a solution of 0.150 g of stereoisomer mixture Ia/Ib in 5 ml of acetonitrile, and the mixture was stirred for 1 h at 25°C, neutralized with a 17% aqueous solution of sodium carbonate, and extracted with diethyl ether. The extract was washed with a 17% aqueous solution

of sodium carbonate and water and dried over sodium sulfate. The solvent was distilled off, and the residue, 0.146 g, contained compounds VIa/VIb+VIIa/VIIb and III at a ratio of ~3.5:1 (GLC). The crude product was twice distilled under reduced pressure (6 mm), a fraction boiling in the range from 80 to 110°C being collected. We thus isolated 0.064 g (33%) of a mixture of compounds VIa, VIb, VIIa, and VIIb at a ratio of ~5:5:2:2 (¹H NMR). Chromatographic separation of a 0.145-g portion of the same crude product on silica gel gave 0.027 g (18%) of ketone III; compounds VIa, VIb, VIIa, and VIIb decomposed during chromatographic separation.

Compounds **VIa/VIb.** ¹H NMR spectrum, δ , ppm: 0.846 d (6H, C¹²H₃, $J_{12,6} = 6.5$ Hz); 0.845 s, 0.848 s, 1.028 s, and 1.031 s (3H each, C⁹H₃, C¹⁰H₃); 1.70 s (6H, C¹¹H₃); 1.05–1.48 m (8H, 4-H, 5-H); 1.97–2.04 m (2H, 6-H); 3.68 m (2H, 3-H); 4.74 d.m (2H, 8-H_{cis}, $J_{8\text{-}cis}, 7\text{-}cis = 10$ Hz); 4.77 d.m (2H, 8-H_{trans}, $J_{8\text{-}trans}, 7\text{-}cis = 17$ Hz); 5.45 d.d.d (2H, 7-H, J = 17, 10, $J_{7,6} = 7.5$ Hz). ¹³C NMR spectrum, $\delta_{\rm C}$, ppm: isomer **VIa**: 67.63 s (C¹), 161.73 s (C²), 88.60 d (C³), 27.40 t (C⁴), 33.41 t (C⁵), 37.76 d (C⁶), 143.50 d (C⁷), 113.09 t (C⁸), 28.99 q and 22.60 q (C⁹, C¹⁰), 13.82 q (C¹¹), 20.14 q (C¹²); isomer **VIb**: 67.63 s (C¹), 161.73 s (C²), 88.15 d (C³), 27.67 t (C⁴), 33.41 t (C⁵), 37.43 d (C⁶), 143.54 d (C⁷), 113.09 t (C⁸), 29.03 q and 22.58 q (C⁹, C¹⁰), 13.82 q (C¹¹), 20.19 q (C¹²).

Compound VIIa/VIIb. ¹H NMR spectrum, δ, ppm: 0.824 d and 0.826 d (3H each, $C^{12}H_3$, $J_{12.6} = 6.5$ Hz); 0.887 s, 0.894 s, 0.939 s, and 0.943 s (3H each, C^9H_3 , $C^{10}H_3$); 1.70 s (6H, $C^{11}H_3$); 1.05–1.48 m (8H, 4-H, 5-H); 1.87-2.02 m (2H, 6-H); 3.015 d.d and 3.020 d.d (1H each, 3-H, $J_{3.4} = 10.5$, $J_{3.4'} = 8$ Hz); 4.66–4.78 m (4H, 8-H_{cis}, 8-H_{trans}); 5.47 d.d.d and 5.45 d.d.d (2H, 7- H_{cis} , $J_{7-cis,8-trans} = 17$, $J_{7-cis,8-cis} = 10$, $J_{7,6} = 7.5$ Hz). 13 C NMR spectrum, $\delta_{\rm C}$, ppm: isomer **VIIa**: 72.29 s (C^1) , 161.73 s (C^2) , 77.51 d (C^3) , 28.92 t (C^4) , 33.41 t (C^5) , 37.76 d (C^6) , 144.11 d (C^7) , 112.39 t (C^8) , 26.36 q and 23.07 q (C^9 , C^{10}), 13.82 q (C^{11}), 19.99 q (C^{12}); isomer **VIIb**: δ_{C} , ppm: 72.29 s (C¹), 161.73 s (C²), 77.98 d (C^3), 29.19 t (C^4), 33.73 t (C^5), 37.50 d (C^6), 144.32 d (\mathbb{C}^7), 112.60 t (\mathbb{C}^8), 26.36 q and 23.09 q (\mathbb{C}^9 , C^{10}), 13.82 q (C^{11}), 20.41 q (C^{12}). Found for mixture $VIa/VIb+VIIa/VIIb: M^{+}$ 195.16283. $C_{12}H_{21}NO.$ Calculated: M 195.16230.

The authors are grateful to the Russian Foundation for Basic Research (project no. 00-03-40142) for providing access to the STN database through the STN Center at the Novosibirsk Institute of Organic Chemistry.

REFERENCES

- 1. Khomenko, T.M., Tatarova, L.E., Korchagina, D.V., and Barkhash, V.A., *Russ. J. Org. Chem.*, 2002, vol. 38, p. 498.
- 2. Gamalevich, G.D. and Serebryakov, E.P., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 1993, p. 342.
- 3. Goldsmith, D.J. and Cheer, C.J., *J. Org. Chem.*, 1965, vol. 30, p. 2264.
- 4. Barrero, A., Alvares-Manzaneda, E.J., and Palomino, P.L., *Tetrahedron*, 1994, vol. 50, p. 13239.
- 5. Odinokov, V.N., Kukovinets, O.S., Kasradze, V.G., Dolidze, A.V., Serebryakov, E.P., Spirikhin, L.V., and Tolstikov, G.A., *Zh. Org. Khim.*, 1993, vol. 29, p. 1936.
- Yarovaya, O.I., Salomatina, O.V., Korchagina, D.V., Polovinka, M.P., and Barkhash, V.A., *Khimiya i komp'-yuternoe modelirovanie. Butlerovskie soobshcheniya* (Chemistry and Computer Modeling. Butlerov Reports), 2002, p. 51.
- 7. Khomenko, T.M., Zenkovets, G.A., and Barkhash, V.A., *Russ. J. Org. Chem.*, 1997, vol. 33, p. 595.